|
中山大学数学与计算科学学院博士生导师贾保国教授学术报告会时间:2016年3月17日(星期四) 晚上7:30-9:20
地点:2A301报告题目:The Relation Between Monotonicity, Convexity and
Discrete Fractional Differences
报告人:贾保国欢迎广大师生参加!
个人简介:贾保国,中山大学数学与计算科学学院,教授,博士生导师。1997年7月毕业于中山大学数学与计算科学学院获博士学位,主要研究动力系统与分形。2007年11月至2008年11月期间访问美国的Nebraska大学,和该校著名的时标动态方程专家Lynn Erbe教授和Allan Peterson教授合作完成了多篇论文。2009年和2012年分别获得国家自然科学基金面上项目(主持)。2014年11月至2015年6月再次访问美国Nebraska大学数学系,与Lynn Erbe教授和Allan Peterson教授合作研究分数阶差分方程的基本理论。
研究领域:时标动态方程中的振动理论,分数阶差分方程解的渐近性态,离散Mittag-Leffler函数的性质。
代表性成果:(近两年)[1]Erbe Lynn, Goodrich Chris, Jia Baoguo, Peterson Allan, Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and
asymptotic behavior of solutions, Advances in Difference Equations, 2016, 2016:43, Page 1-31.(invited paper,作者按照字母顺序排列)
[2]Baoguo Jia, Lynn Erbe and Allan Peterson, Comparison theorems and asymptotic behavior of solutions of discrete fractional equations,
Electron J. Qual. Theory Differ. Equ. 2015, No.89, 1-18.
[3]Boqun Ou, Baoguo Jia and Lynn Erbe, An extended Halanay inequality of integral type on time scales, Electron J.Qual. Theory Differ. Equ. 2015, No. 38, 1-11.
[4] Jia Baoguo, Lynn Erbe and Allan Peterson, Two monotonicity results for nabla and delta fractional differences, Archiv der Mathematik,104(2015),589-597.
[5] Jia Baoguo, Lynn Erbe and Allan Peterson, Convexity for nabla and delta fractional differences, J. Difference Equ. Appl., Vol. 21, No. 4, 2015, 360-373.
[6] Jia Baoguo, Lynn Erbe and Allan peterson, Some relations between the Caputo fractional difference operators and integer order differences, Electronic Journal of Differential Equations, 2015, No. 163, Pages 1-7.
[7] Jia Baoguo, Lynn Erbe and Raziye Mert, Comparison theorems for even order dynamic equations on time scales, Dynamic Systems and Applications, 23(2014), 221-234.
[8] Jia Baoguo, Lynn Erbe and Allan Peterson, Butler-type oscillation theorem for second order superlinear dynamic equations on time scales, J. Difference Equ. Appl., 20(2014), 671-684.
[9] Jia Baoguo, Lynn Erbe and Raziye Mert, A Halanay-type inequality on time scales in higher dimensional spaces, Mathematical Inequalities and Applications, 2014, Vol.17, No.3, 813-821.
[10] Lynn Erbe, Jia Baoguo, and Raziye Mert, A Wong-type necessary and sufficient condition for nonoscillation of second order linear dynamic equations on time scales, Communications in Applied Analysis 18 (2014), 41–58
报告会就在明晚,约吗?
编辑:广东石油化工学院学生处 |
|